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Introduction

Computational group theory (CGT) is a subfield of symbolic algebra; it deals
with the design, analysis, and implementation of algorithms for manipulating
groups. It is an interdisciplinary area between mathematics and computer sci-
ence. The major areas of CGT are the algorithms for finitely presented groups,
polycyclic and finite solvable groups, permutation groups, matrix groups, and
representation theory.

The topic of this book is the third of these areas. Permutation groups are
the oldest type of representations of groups; in fact, the work of Galois on
permutation groups, which is generally considered as the start of group theory
as a separate branch of mathematics, preceded the abstract definition of groups
by about a half a century. Algorithmic questions permeated permutation group
theory from its inception. Galois group computations, and the related problem
of determining all transitive permutation groups of a given degree, are still
active areas of research (see [Hulpke, 1996]). Mathieu’s constructions of his
simple groups also involved serious computations.

Nowadays, permutation group algorithms are among the best developed parts
of CGT, and we can handle groups of degree in the hundreds of thousands. The
basic ideas for handling permutation groups appeared in [Sims, 1970, 1971a];
even today, Sims’s methods are at the heart of most of the algorithms.

Atfirst glance, the efficiency of permutation group algorithms may be surpris-
ing. The input consists of a list of generators. On one hand, this representation
is very efficient, since a few permutations in S,, can describe an object of size up
to n!. On the other hand, the succinctness of such a representation G = (S) ne-
cessitates nontrivial algorithms to answer even such basic questions as finding
the order of G or testing membership of a given permutation in G.

Initially, itis not even clear how to prove in polynomial time in the input length
that a certain permutation g is in G, because writing g as a product of the given
generators S for G may require an exponentially long word. Sims’s seminal
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idea was to introduce the notions of base and strong generating set. This data
structure enables us to decide membership in G constructively, by writing any
given element of G as a short product of the strong generators. The technique
for constructing a strong generating set can also be applied to other tasks such
as computing normal closures of subgroups and handling homomorphisms of
groups. Therefore, a significant part of this book is devoted to the description
of variants and applications of Sims’s method.

A second generation of algorithms uses divide-and-conquer techniques by
utilizing the orbit structure and imprimitivity block structure of the input group,
thereby reducing the problems to primitive groups. Although every abstract
group has a faithful transitive permutation representation, the structure of prim-
itive groups is quite restricted. This extra information, partly obtained as a
consequence of the classification of finite simple groups, can be exploited in
the design of algorithms.

We shall also describe some of the latest algorithms, which use an even finer
divide-and-conquer technique. A tower of normal subgroups is constructed
such that the factor groups between two consecutive normal subgroups are the
products of isomorphic simple groups. Abelian factors are handled by linear al-
gebra, whereas the simple groups occurring in nonabelian factors are identified
with standard copies of these groups, and the problems are solved in the stan-
dard copies. This identification process works in the more general black-box
group setting, when we do not use the fact that the input group is represented
by permutations: The algorithms only exploit the facts that we can multiply
and invert group elements and decide whether two group elements are equal.
This generality enables us to use the same algorithms for matrix group inputs.
Computations with matrix groups is currently the most active area of CGT.

Dealing with permutation groups is the area of CGT where the complexity
analysis of algorithms is the most developed. The initial reason for interest
in complexity analysis was the connection of permutation group algorithms
with the celebrated graph isomorphism problem. The decisive result in estab-
lishing the connection is the polynomial-time algorithm in [Luks, 1982] for
testing isomorphism of graphs with bounded valence, where the isomorphism
problem is reduced to finding setwise stabilizers of subsets in the permutation
domain of groups with composition factors of bounded size. This paper not
only established a link between complexity theory and CGT but provided new
methodology for permutation group algorithms.

Up until the end of the 1980s, permutation group algorithms were devel-
oped in two different contexts. In one of these, the primary goal was efficient
implementation, to handle the groups occurring in applications. In the other
context, the main goal was the rigorous asymptotic analysis of algorithms.
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Algorithms for numerous tasks were developed separately in the two con-
texts, and the two previous books on permutation group algorithms reflect
this division: [Butler, 1991] deals mostly with the practical approach, whereas
[Hoffmann, 1982] concentrates on the asymptotic analysis. In the past decade,
aremarkable convergence of the approaches occurred, and algorithms with fast
asymptotic running times that are suitable for implementation were developed.
The main purpose of this book is to describe this new development. We con-
sider the interaction of theory and implementation to be of great importance
to each side: Symbolic algebra can benefit considerably by the influx of ideas
of algorithmic complexity theory and rigorous asymptotic analysis; conversely,
the implementations help demonstrate the power of the asymptotic paradigm,
which is at the foundation of the theory of computing.

The major theme of this book is the description of nearly linear-time algo-
rithms. These are the algorithms representing the convergence of theoretical
and practical considerations. Their running time is O(n|S|log® |G|) for input
groups G = (S) < §,; in particular, in the important subcase of small-base
groups, when log |G| is bounded from above by a polylogarithmic function of
n, the running time is a nearly linear, O(N log® N), function of the input length
N = n|S|. The category of small-base groups includes all permutation repre-
sentations of finite simple groups except the alternating ones and all primitive
groups that do not have alternating composition factors in their socle. Most
practical computations are performed with small-base input groups.

Quite different methods give the asymptotically fastest solutions for com-
putational problems in large-base groups, where log |G| is bounded only by
log n!. Most of these algorithms have not yet been implemented. We shall also
describe backtrack methods, which are the practical algorithms for problems
with no known polynomial-time solutions. For small-base input groups, back-
track methods may be practical in groups of degree in the tens of thousands.

Our main goal is to present the mathematics behind permutation group algo-
rithms, and implementation details will be mostly omitted. We shall give details
only in the cases where the implemented version differs significantly from the
one described by the theoretical result or when the reason for the fast asymptotic
running time is a nontrivial data structure. Most of the algorithms described in
this book have been implemented in the GAP system [GAP, 2000], which, along
with its source code, is freely available. GAP code is written in a high-level,
Pascal-like language, and it can be read as easily as the customary pseudocode
in other books and articles on computational group theory. The addresses of ftp
servers for GAP can be obtained from the World Wide Web page

http://www-gap.dcs.st-and.ac.uk/~gap.
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The other large computer algebra system particularly suitable for computations
with groups is MAGMA (see [Bosma et al., 1997]). The World Wide Web page

http://www.maths.usyd.edu.au:8000/u/magma

describes how to access MAGMA on a subscription basis.
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1.1. A List of Algorithms

In this book, most algorithms are described in the proofs of theorems or just
in the narrative, without any display or pseudocode. Whenever it is possible,
algorithms given in the narrative are preceded by a centered paragraph header.
The following list serves as a reference guide; it is organized roughly along
the lines of the lists in Sections 3.1 and 3.3. The input is a permutation group
G < Sym(R2).

¢ Orbit of some « € Q: Section 2.1.1; in particular, Theorem 2.1.1
* Blocks of imprimitivity
(i) A minimal nontrivial block: Section 5.5.1 (algorithm MinimalBlock)
(ii)) The minimal block containing a given subset of €2: Section 5.5.2
* Shallow Schreier tree construction
(i) Deterministic: Lemma 4.4.2, Remark 4.4.3, Lemma 4.4.8
(i) Las Vegas: Theorem 4.4.6, Remark 4.4.7
* Strong generating set construction
(i) Deterministic: Section 4.2 (Schreier—Sims algorithm), Theorem 5.2.3
(with known base), Section 7.1 (for solvable groups), Theorem 10.1.3
(stored in a labeled branching)
(i1) Monte Carlo: Section 4.5, Theorems 5.2.5 and 5.2.6, Lemma 5.4.1,
Section 10.3
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(iii) Heuristic: Section 4.3 (random Schreier—Sims algorithm)
(iv) GAP implementation: Section 4.5.1, Remark 5.2.7
* Strong generating set verification
(i) Deterministic: Section 8.1 (Schreier—Todd—Coxeter—Sims algorithm),
Section 8.2 (Verify routine)
(i1) Monte Carlo: Lemma 4.5.6
(iii) Las Vegas: Theorem 8.3.1
* Membership test (sifting): Section 4.1
* Reduction of the size of generating sets
(i) Strong generators, deterministic: Lemma 4.4.8, Exercise 4.7
(ii) Arbitrary generators, Monte Carlo: Lemma 2.3.4, Theorem 2.3.6
* Random element generation
(i) With an SGS: Section 2.2, first paragraph
(i) Without an SGS: Section 2.2 (random walk on a Cayley graph, product
replacement algorithm)
(iii) In alternating and symmetric groups: Exercises 2.1 and 2.2
* Isomorphism with other representations
(i) With a black-box group: Section 5.3
(ii) Solvable groups, with a power-commutator presentation: Section 7.2
(iii) A, and S,,, with natural action: Theorem 10.2.4
(iv) PSL,(q), with the action on projective points: Section 5.3
* Operations with base images and with words in generators: Lemmas 5.2.1,
5.2.2,and 5.3.1
* Base change (transposing and conjugating base points, deterministic and Las
Vegas algorithms): Section 5.4, Exercise 5.5
* Presentations: Section 7.2 (for solvable groups), Section 8.1, Exercise 5.2,
Theorem 8.4.1
* Pointwise stabilizer of a subset of ©2: Section 5.1.1
* Handling of homomorphisms (kernel, image, preimage)
(1) Transitive constituent and block homomorphisms: Section 5.1.3
(i) General case: Section 5.1.2
¢ Closure for G-action, normal closure
(1) With membership test in substructures, deterministic: Sections 2.1.2 and
5.1.4, Lemma 6.1.1
(i) Without membership test, Monte Carlo: Theorems 2.3.9 and 2.4.5
» Commutator subgroup computation, derived series, lower central series
(i) With membership test in substructures, deterministic: Sections 2.1.2
and 5.1.4
(i) Without membership test, Monte Carlo: Theorems 2.3.12 and 2.4.8
» Upper central series in nilpotent groups: Section 7.4.2
* Solvability test: Sections 2.1.2, 5.1.4, and 7.1
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* Nilpotency test: Sections 2.1.2, 5.1.4, and 7.4.1
* Subnormality test: Section 2.1.2
¢ Commutativity test (Monte Carlo): Lemma 2.3.14
* Regularity test: Exercises 5.12-5.15
* Center: Section 6.1.3
* Permutation representation with a normal subgroup N in the kernel: Lem-
mas 6.2.2 and 6.2.4, Theorem 6.3.1 (if N is abelian)
¢ Composition series
(i) Reduction to the primitive group case: Section 6.2.1
(i) Finding normal subgroups in various types of primitive groups (Monte
Carlo): Sections 6.2.3 and 6.2.4
(iii) Verification of composition series, if SGS is known: Section 6.2.6
(iv) GAP implementation: Section 6.2.5
(v) Composition series without the classification of finite simple groups:
Section 6.2.6
* Chief series: Section 6.2.7
* Sylow subgroups and Hall subgroups in solvable groups: Section 7.3.1, Ex-
ercise 7.5 (Theorem 7.3.3 for conjugating Sylow subgroups)
* Core of a subnormal subgroup: Section 6.1.5
* p-core and solvable radical: Section 6.3.1
* Backtrack, general description: Section 9.1 (traditional), Section 9.2 (partition
backtrack)
* Setwise stabilizer of a subset of 2: Section 9.1.2, Example 2
* Centralizer
(i) In the full symmetric group: Section 6.1.2
(i) Of a normal subgroup: Section 6.1.4
(iii) General case: Section 9.1.2, Example 1
* Intersection of groups: Corollary 6.1.3 (if one of the groups normalizes the
other), Section 9.1.2, Example 3 (general case)
* Conjugating element: Section 9.1.2, Example 4
* Conjugacy classes: Section 7.3.2 (in solvable groups), Section 9.4 (general
case)
* Normalizer: Section 9.3

1.2. Notation and Terminology

We assume that the reader is familiar with basic notions concerning groups
covered in introductory graduate courses and with elementary probability the-
ory. A background area with which we do not suppose reader familiarity is
the detailed properties of finite simple groups, and the occasional references to
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these properties can be ignored without impeding understanding of the subse-
quent material. However, readers interested in further research in permutation
group algorithms are strongly advised to acquire knowledge of groups of Lie
type. One of the current largest obstacles, both in the permutation group and
matrix group setting, is our inability to exploit algorithmically properties of
exceptional groups of Lie type.

The required (minimal) background material about permutation groups
can be found for example in the first chapter of the recent books [Dixon and
Mortimer, 1996] and [Cameron, 1999]. Here we only summarize our notation
and terminology. In this book, all groups are finite.

All statements (i.e., theorems, lemmas, propositions, corollaries, and re-
marks) are numbered in a common system. For example, Theorem X.Y.Z de-
notes the Zth statement in Chapter X, Section Y, if this statement happens to
be a theorem. Definitions are just part of the text and are not displayed with a
number. Any unknown items (hopefully) can be found in the index. In the index,
boldface type is used for the page number where an item or notation is defined.
There are exercises at the end of some chapters, numbered as Exercise X.Y in
Chapter X. A third numbering system is used for the displayed formulas, in the
form (X.Y) in Chapter X.

1.2.1. Groups

If G is a group and S C G then we denote by () the subgroup generated by S.
We write H < G toindicate that H isasubgroupof Gand H < Gif H < G and
H # G.If H isisomorphic to a subgroup of G then we write H < G. The symbol
|G : H| denotes the number |G|/|H|, and H < G denotes that H is normal in
G. A subgroup H < G is subnormal in G, in notation H << G, if there exists a
chain of subgroups H = Hy<H < --- <H; = G.If N<G and H < G such
that NN H =1 and G = N H then we call H a complement of N in G.

The group of automorphisms, outer automorphisms, and inner automor-
phisms of G are denoted by Aut(G), Out(G), and Inn(G), respectively. We say
that G acts on a group H if ahomomorphism ¢ : G — Aut(H) is given. If ¢ is
clear from the context, for g € G and h € H we sometimes denote ¢(g)(h), the
image of & under the automorphism ¢(g), by h8.If G actson H and U € H
then UY := {U?| g € G} is the orbit of U under the G-action, and (U°) is
the G-closure of U. In the special case H = G, the group (UY) is called the
normal closure of U. For U < H,Cs(U) :={g € G|(Vu € U)w® = u)}is
the centralizer of U in G and Ng(U) := {g € G |U$ = U} is the normalizer
of U in G. In particular, Z(G) := Cg(G) is the center of G.
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The commutator of a, b € G is [a, b] := a~'b~'ab and the conjugate of a
by bis a” := b~'ab. For H, K < G, the commutator of H and K is defined
as [H, K] := ([h,k]|h € H,k € K). In particular, [G, G], also called the
derived subgroup of G, is denoted by G’. A group G is perfect if G = G’. The
derived series of G is the sequence Dy > D; > - - - of subgroups of G, defined
recursively by the rules Dy := G and D,y := D; fori > 0. The lower central
series Lg > Ly > --- of G is defined as Ly := G and L;4; := [L;, G] for
i > 0. The upper central series Zy < Z1 < --- of G is defined as Z, := 1 and
Z; is the preimage of Z(G/Z;) in G fori > 0. A group G is called solvable
if D,, = 1 for some m, and it is called nilpotent if L,, = 1 or Z,, = G for
some m.

The direct product of groups Ay, ..., A, isdenoted by A; x --- X A,, or by
]_[;":1 A;.Fori =1,2,...,m,the projection function w;: A} X --- X A,y = A
is defined by the rule 7;: (ay, ..., ay,) — a;. Agroup H < A} X --- X Ay, 1

a subdirect product of the A; if all functions r; restricted to H are surjective,
ie, {m(h)|h e H} = A;.

For H < G, atransversal G mod H is a set of representatives from the right
cosets of H in G. For a fixed transversal T and g € G, we denote by g the coset
representative in 7 such that g € H g. Unless stated explicitly otherwise, cosets
always mean right cosets.

If X is any collection of simple groups, Ox(G) denotes the largest normal
subgroup of G such that each composition factor of Ox(G) is isomorphic to
a member of ¥, and O¥(G) denotes the smallest normal subgroup of G such
that each composition factor of G/O*(G) is isomorphic to a member of . In
particular, if ¥ consists of a single group of prime order p then Ox(G) is denoted
by O,(G); this is the largest normal p-subgroup, the p-core, of G. When X
consists of all cyclic simple groups, Os(G) is denoted by O,.(G); this is the
largest solvable normal subgroup, the solvable radical of G. Similarly, O*°(G)
denotes the smallest normal subgroup of G with solvable factor group and it is
called the solvable residual of G. For H < G, Coreg(H) := ({H¢|g € G}
is the largest normal subgroup of G contained in H; it is the kernel of the
permutation representation of G on the (right) cosets of H. The socle of G
is the subgroup of G generated by all minimal normal subgroups of G and is
denoted by Soc(G).

The cyclic group of order n is denoted by C,,. The group of invertible d x d
matrices over the g-element field GF(g) is denoted by GL;(g). Similar notation
is used for the other classical matrix groups of Lie type and for their projective
factor groups: SL;(g), PSL;(g), and so on. The unitary groups GU,(g), SU4(q),
and PSU,(q) are defined over GF(¢?). For exceptional groups of Lie type, we
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use the Lie-theoretic notation 2B,(q), 2G2(g), and so on. As mentioned earlier,
no detailed knowledge of the groups of Lie type is required in this book.

1.2.2. Permutation Groups

We shall use the cycle notation for permutations, and the identity permuta-
tion is denoted by (). The group of all permutations of an n-element set <2 is
denoted Sym(£2), or S, if the specific set is inessential. Subgroups of S, are
the permutation groups of degree n. We use lowercase Greek letters to denote
elements of 2; lower- and uppercase italics denote elements and subgroups
of S,, respectively. For « €  and g € Sym(£2), we write o8 for the image of
« under the permutation g. The alternating group on €2 is denoted by Alt(£2)
(or A,). The support of g € Sym(£2), denoted by supp(g), consists of those el-
ements of 2 that are actually displaced by g: supp(g) = {w € Q| w? # w}.
The set of fixed points of g is defined as fix(g) := Q2\supp(g). The degree of g
is deg(g) = [supp(g)|-

We say that a group G acts on A if a homomorphism ¢ : G — Sym(A) is
given (by specifying the image of a generator set of G). This action is faithful if
its kernel ker(¢) is the identity. The image ¢(G) < Sym(A) is also denoted by
G*. In the special case when G < Sym(R2), A C Q is fixed by G, and ¢ is the
restriction of permutations to A, we also denote G2 by G|a. The orbitof w € Q
under G < Sym(£2) is the set of images w® :={w?| g € G}. For A € Q and
g €Sym(L2), A8 := {88 |5 € A}. A group G < Sym(€2) is transitive on 2 if it
has only one orbit, and G is ¢-transitive if the action of G induced on the set of
ordered ¢-tuples of distinct elements of €2 is transitive (¢ < n). The maximum
such ¢ is the degree of transitivity of G.

If G < Sym(2) is transitive and A € 2, then A is called a block of imprimi-
tivity for G if forall g € G either A8 = A or AS N A = . The group G is called
primitive if all blocks have 0, 1, or |2| elements. If A is a block then the set of
images of A is a partition of €2, which is called a block system, and an action of G
is induced on the block system. A block is called minimal if it has more than one
element and its proper subsets of size at least two are not blocks. A block is called
maximal if the only block properly containing itis 2. A block system is maximal
if it consists of minimal blocks, whereas a block system is minimal if it consists
of maximal blocks. The action of G on a minimal block system is primitive.

For A € Q and G < Sym(£2), G(a) denotes the pointwise stabilizer of A,
namely, Ga) = {g € G | (V5 € A)(8% = §)}. If A has only one or two elements,
we often drop the set braces and parentheses from the notation; in particular,
G5 denotes the stabilizer of § € Q. The setwise stabilizer of A is denoted
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by Ga (e, Gao = {geG|AS = A})). If A = (61,...,68n) is a sequence of
elements of 2 then G A denotes the pointwise stabilizer of that sequence (i.e.,
Ga=Gs,...501)

A group G < Sym(R2) is semiregular if Gs=1 for all § € 2, whereas G
is regular if it is transitive and semiregular. A Frobenius group is a transitive
group G < Sym(£2) that is not regular but for which G,g =1 for all distinct
o, Bef.

If g € Sym(L2) then a bijection ¢ : 2 — A naturally defines a permutation
#(g) € Sym(A) by the rule p(w)?® = @(w?) for all @ € Q. We say that
G < Sym(Q2) and H < Sym(A) are permutation isomorphic, H ~ G, if there
is a bijection ¢: Q2 — A such that (G) := {p(g)|g € G} = H.

Let G be an arbitrary group and let H < S; be a transitive permutation

group. The wreath product G : H consists of the sequences (g1, ..., g h)
where g; € G fori =1,...,k and h € H. The product of (g, ..., g; k) and
(815 ..., 8k; h)isdefined as (g181n - .., gk&rhs hh).

1.2.3. Algorithmic Concepts

Groups in algorithms will always be input and output by specifying a list of
generators.

Given G = (S), a straight-line program of length m reaching some g € G
is a sequence of expressions (wy, . .., wy,) such that, for each i, w; is a symbol
for some element of §, or w; = (w;, —1) for some j < i, or w; = (w;, wy)
for some j, k < i, such that if the expressions are evaluated in G the obvious
way then the value of w,, is g. Namely, the evaluated value of a symbol for a
generator is the generator itself; the evaluated value of w; = (w;, —1) is the
inverse of the evaluated value of w;; and the evaluated value of w; = (w;, wy)
is the product of the evaluated values of w; and wy. Hence a straight-line
program is an encoding of a sequence of group elements (g, .. ., g,) such that
gm = g and for each i one of the following holds: g; € S, or g; = gj_1 for some
J <i,org; = g;g forsome j, k < i. However, the more abstract definition as
a sequence of expressions not only requires less memory but also enables us to
construct a straight-line program in one representation of G and evaluate it in
another, which is an important feature of some algorithms.

The symbols Z, N, and R denote the set of integers, nonnegative integers,
and real numbers, respectively. Let

Fi={f:N— R|@ny € N)(¥n > no)(f(n) > 0)}

(i.e., functions that take positive values with finitely many exceptions). For
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f € F, we define

O(f) :={t € FI(3c > 0)3np € N)(Vn > no)(t(n) < cf(n)},
Qf) :={t € F|(Ac > 0)(3ng € N)(Vn > no)(t(n) > cf(n))},
o(f):={t € F|(¥Vc > 0)3ng € N)(Vn > no)(t(n) < cf(n))},

and

O(f) == O0(f) N Q).

Stated less formally, t € O(f) means that for large enough n, t(n)/f(n) is
bounded from above by an absolute constant c; ¢ € 2(f) means that for large
enough n, t(n)/ f (n) is bounded from below by an absolute positive constant c;
and ¢ € o(f) means that the limit of #(n)/f (n) is 0.

Fort € O(f), we also say that ¢ is O( f), and we use similar statements for 2
and © as well. We believe that this notation is more correct than the traditional
t = O(f) (see [Brassard and Bratley, 1988, Chap. 2] for the different variants
of these notations).

We also introduce a “soft version” of the big- O notation. We writer € O~ (f)
if 1(n) < Cf(n)log’ n for large enough n (where ¢, C are positive constants).
Logarithms are always of base 2.

1.2.4. Graphs

Let V be a set and £ a subset of the two-element subsets of V. The pair (V, &)
is called a graph X(V, ). The elements of V and £ are the vertices and the
edges of X, respectively. For v € V, the number of edges containing v is the
degree or valency of v, which we shall denote by deg(v). A graph X is called
regular if all vertices have the same valency. We also say that an edge {u, v} € £
connects u and v. The set N(v) := {u € V | {u, v} € £} is the neighborhood of
vin X. A graph & is called bipartite if V can be partitioned into two sets A, B
so that all edges of X' connect some vertex in A with some vertex in B. The
automorphism group Aut(X) consists of those permutations of V that leave £
invariant.

These notions can be generalized by requiring only that the elements of £ are
subsets of V, but of arbitrary size. Then X is called a hypergraph. A hypergraph
X is uniform if all elements of £ are of the same size.

Another generalization is when £ consists of ordered pairs of V. Then X is
called a directed graph. If we want to emphasize that a graph is directed then
we shall use arrows above £ and above the ordered pairs in £. The out-degree
of a vertex u is the number of edges m in £. For a directed graph X(V, g ),
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the underlying graph of X is the graph U(V, E) with edge set E = {{u, v} |
(, v) € ).

Let X(V, &) be a graph. A walk in X is a sequence of vertices (vg, vy, - . . , Ug)
such that {v;, v;41} € € foralli € [0, k — 1]. A path is a walk with v; # v; for
all i, j with0 < i < j < k; acycle is a walk with vy = v, and v; # v; for all
i, jwithO <i < j <k — 1. We can define a binary relation R on V by letting
(u, v) € R if and only if there is a walk (4 = vy, vy, ..., vr = v). Then R is an
equivalence relation; the equivalence classes are called the components of X.
The graph X is connected if it has only one component.

If X is a directed graph then walks, cycles, and paths are defined similarly,
but the binary relation R is not necessarily an equivalence relation. We may
define another binary relation R on V: (u,v) € R if and only if (u,v) € R
and (v, u) € R. Then R is an equivalence relation, and its equivalence classes
are called the strongly connected components of X. The directed graph X is
strongly connected if it has only one strongly connected component.

Cycle-free graphs are called forests and connected, cycle-free graphs are
called trees. A rooted tree is a tree with a distinguished vertex. If X(V, ) is a
rooted tree with root r then the parent of v € V\{r} is the first vertex after v
on the unique path from v to r. The children of v € V are those vertices whose
parent is v. A vertex without children is called a leaf.

Let G be a group and S € G. The Cayley graph I'(G, S) is defined to have
vertex set G; for g, h € G, {g, h} is an edge if and only if gs = & for some
s € SUS™!. The Cayley graph I'(G, S) is connected if and only if G = (S).
Cayley graphs are regular and vertex-transitive (i.e., Aut(I"(G, S)) is a transitive
subgroup of Sym(G)).

Sequences will be denoted by enclosing their elements in parentheses. For a
sequence L, L[i] denotes the ith element of L.

The most abused notation is (a, b) for integers a and b. Depending on the
context, it may mean a sequence with elements a and b, the set of real numbers
between a and b, the set of integers between a and b (although, in this case,
we shall prefer to use the closed interval [a + 1, b — 1]), or the permutation
exchanging a and b.

1.3. Classification of Randomized Algorithms

As we shall see in numerous examples in this book, randomization can speed up
many algorithms handling permutation groups. In other parts of computational
group theory, randomization is even more important: For example, when deal-
ing with matrix groups, the scope of efficient deterministic algorithms is very
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limited, both in the practical and theoretical sense of efficiency. Randomization
also seems to be an indispensable tool in algorithms for black-box groups.

In this section, we describe the different types of randomized algorithms.
Our discussion follows [Babai, 1997].

Computational tasks can be described by a relation R(x, y) between an input
string x and output string y. The relation R(x, y) holds if y is a correct output
for the task described by x. In group algorithms, the input usually contains
a set of generators for a group. The output may consist of group elements,
generating a desired subgroup of the input, but other types of output are also
conceivable: The output could be a number (for example, the order of the input
group) or a statement that group elements with the desired property do not exist
(for example, when asking for a group element conjugating one given element
to another one).

Note that there may be different correct outputs for the same input. We call a
computational task functional if it has exactly one correct output for all inputs.
For example, finding generators for a Sylow 2-subgroup is not a functional
computational task, whereas finding the order of a group is. A special category
of (functional) computational tasks is the class of decision problems. Here, the
answer is a single bit, representing “yes” or “no.” For example, determining
solvability of the input group is a decision problem.

A (correct) deterministic algorithm computes an output f(x) for all inputs
x, so that R(x, f(x)) holds. A randomized algorithm uses a string r of random
bits (“coin flippings”) and returns the output f(x, r). The output may not be
correct for every sequence r.

We call a randomized algorithm Monte Carlo if for all inputs x,

Prob(R(x, f(x,r))holds) > 1 — ¢,

where the value for the error term € < 1/2 is specified in the description of the
Monte Carlo algorithm. In most practical situations, the reliability of the algo-
rithms can be improved by repeated applications, or by running the algorithms
longer. Although we cannot formulate a theorem in the general setting consid-
ered in this section, at least the following holds for all Monte Carlo algorithms
for permutation groups described in this book: The probability of an incorrect
answer can be bounded from above by an arbitrary ¢ > 0, prescribed by the
user. The associated cost is the running time of the algorithm multiplied by a
factor O(log(1/¢)).

A situation we can analyze here is the case of decision problems. Suppose that
we have a Monte Carlo algorithm for a decision problem, with error probability
¢ < 1/2.Running the algorithm 7 times, and taking a majority vote of the results,
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we can increase the reliability to at least 1 — §’, with § := 2/e(1 —¢) < 1:
The probability of error is at most

11

t t— t : t € v t
Z<k>€k(l—s) K< —oe) Z(k>(l_8) <&

k=t/2 k=t/2

Babai also discusses one-sided Monte Carlo algorithms (IMC algorithms)
for decision problems. These are algorithms where at least one of the outputs
is guaranteed to be correct: If the correct answer is “yes,” a IMC algorithm
may err; if the correct answer is “no,” the algorithm must always output “no.”
Hence, an output “yes” is always correct, whereas an output “no” may not be.
The co-1MC algorithms are defined by exchanging the words “yes” and “no”
in the definition of 1MC algorithms.

In the context of group theoretical algorithms, the notion of IMC algorithms
can be extended to most computational tasks, since the error is usually one-
sided: For example, when computing generators U for the normal closure of
some H < G (cf. Section 2.3.3), we never place an element of G on the gener-
ator list U that is not in (H¢). The error we may commit is that (U) is a proper
subgroup of (H%). Another example is the Monte Carlo order computation in
permutation groups (cf. Section 4.5): The result we obtain is always a lower
bound for |G|, because we do not place permutations not belonging to G into
the strong generating set of G.

An important subclass of Monte Carlo algorithms is the class of Las Vegas
algorithms. This term was introduced in [Babai, 1979] to denote Monte Carlo
algorithms that never give an incorrect answer. The output is either correct (with
the prescribed probability at least 1 — ¢) or the algorithm reports failure. Here,
& may be any given constant less than 1, since the probability of an (always cor-
rect) output can be increased to at least 1 — &’ by running the algorithm ¢ times.

Las Vegas algorithms are preferable over general Monte Carlo algorithms
for many reasons. One of them is the certainty of the answer. Another one is
that recognizing the correct answer often allows early termination. Finally, if
we can guarantee that the output is always correct then we may use heuristics to
speed up the algorithm, even in cases when we cannot estimate the probability
of error for our heuristics.

In practice, if a Las Vegas algorithm reports failure then we rerun it until
the correct output is produced. The definition of Las Vegas algorithms can be
reformulated so that they always return a correct answer, with the running time
estimate replaced by an estimate of the expected running time.

A Monte Carlo algorithm, combined with a deterministic checking of the
result, becomes a Las Vegas algorithm, because we can recognize that the Monte
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Carlo algorithm returned an incorrect output, and report failure. Another way to
obtain Las Vegas algorithms is by using both 1IMC and co-1MC algorithms for
a decision problem. Running both of these algorithms, with probability at least
1 — & one of them will return a guaranteed correct output. If both algorithms
return an answer that may not be correct, then we report failure. An important
direction of current research is the upgrading of Monte Carlo algorithms for
permutation groups to Las Vegas type. We shall describe a result in this direction
in Section 8.3.



